3.1392 \(\int \frac {x^2}{\sqrt {2+x^6}} \, dx\)

Optimal. Leaf size=14 \[ \frac {1}{3} \sinh ^{-1}\left (\frac {x^3}{\sqrt {2}}\right ) \]

[Out]

1/3*arcsinh(1/2*x^3*2^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {275, 215} \[ \frac {1}{3} \sinh ^{-1}\left (\frac {x^3}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[2 + x^6],x]

[Out]

ArcSinh[x^3/Sqrt[2]]/3

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {2+x^6}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+x^2}} \, dx,x,x^3\right )\\ &=\frac {1}{3} \sinh ^{-1}\left (\frac {x^3}{\sqrt {2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 14, normalized size = 1.00 \[ \frac {1}{3} \sinh ^{-1}\left (\frac {x^3}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[2 + x^6],x]

[Out]

ArcSinh[x^3/Sqrt[2]]/3

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 16, normalized size = 1.14 \[ -\frac {1}{3} \, \log \left (-x^{3} + \sqrt {x^{6} + 2}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

-1/3*log(-x^3 + sqrt(x^6 + 2))

________________________________________________________________________________________

giac [A]  time = 0.21, size = 16, normalized size = 1.14 \[ -\frac {1}{3} \, \log \left (-x^{3} + \sqrt {x^{6} + 2}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

-1/3*log(-x^3 + sqrt(x^6 + 2))

________________________________________________________________________________________

maple [A]  time = 0.14, size = 12, normalized size = 0.86 \[ \frac {\arcsinh \left (\frac {\sqrt {2}\, x^{3}}{2}\right )}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^6+2)^(1/2),x)

[Out]

1/3*arcsinh(1/2*2^(1/2)*x^3)

________________________________________________________________________________________

maxima [B]  time = 1.05, size = 33, normalized size = 2.36 \[ \frac {1}{6} \, \log \left (\frac {\sqrt {x^{6} + 2}}{x^{3}} + 1\right ) - \frac {1}{6} \, \log \left (\frac {\sqrt {x^{6} + 2}}{x^{3}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

1/6*log(sqrt(x^6 + 2)/x^3 + 1) - 1/6*log(sqrt(x^6 + 2)/x^3 - 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.07 \[ \int \frac {x^2}{\sqrt {x^6+2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^6 + 2)^(1/2),x)

[Out]

int(x^2/(x^6 + 2)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 1.75, size = 12, normalized size = 0.86 \[ \frac {\operatorname {asinh}{\left (\frac {\sqrt {2} x^{3}}{2} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x**6+2)**(1/2),x)

[Out]

asinh(sqrt(2)*x**3/2)/3

________________________________________________________________________________________